Mark scheme - Stationary Waves

Questio n		Answer/Indicative content	Marks	Guidance
1		D	1	
		Total	1	
2		C	1	
		Total	1	
3		C	1	
		Total	1	
4		B	1	Examiner's Comments The correct response is \mathbf{B}. Around two thirds of candidates were able to correctly calculate the frequency; this question relies on the candidate appreciating that there is more than one complete cycle in the tube and then evaluating the correct wavelength. It is then a straightforward calculation. As expected, most of the incorrect responses were \mathbf{A}, where the wave equation had simply been used with the given numbers. Several candidates drew on the diagram to help in their calculation of the wavelength, although some thought that the wavelength was two thirds of the tube length, rather than four fifths.
		Total	1	
5		A	1	
		Total	1	
6		C	1	
		Total	1	
7		B	1	
		Total	1	
8		C	1	
		Total	1	
9		B	1	
		Total	1	
10		C	1	
		Total	1	
11		B	1	
		Total	1	
12	i	'Inverted' graph	B1	Ignore amplitude Examiner's Comments

			The majority of the candidates drew the correct variation of the displacement after a time of half a period. In (a)(ii), it was good to see the nodes clearly marked with the letters \mathbf{N}. The most common mistake was to draw a curve with a different period with nodes at all the points where the displacement was zero.
	Nodes shown correctly	B1	Expect at least 2 nodes labelled \mathbf{N} No mark if the labels \mathbf{N} are omitted Note the nodes must be on the original graph and not that sketched in (a)(i)
	Total	2	
13	A progressive wave transfers energy / information (in the direction of the wave)/all points have (the same) amplitude In a stationary wave there is no net energy transfer / energy is stored / has points which are always zero amplitude / or points have different amplitudes	B1 B1	Note for two marks there must be a comparison Allow stationary wave has nodes (and antinodes) for one mark Examiner's Comments Most candidates answered the difference between stationary and progressive waves in terms of energy considerations.
	Total	2	
14	$v \propto f$ and since $v \propto$ $\checkmark T$, therefore $f \propto$ $\checkmark T$ frequency will increase by a factor of $\sqrt{ } 1.14=1.068$, therefore increase $=6.8 \%$	C1	
	Total	2	
15	Difference: (stationary waves) has nodes / antinodes Similarity: Oscillations are longitudinal	B1 B1	Differences and/or similarities can be described in terms of net energy transfer, phase or amplitude variations Examiner's Comments This question is clear that the differences and similarities should be based on the oscillations. Few candidates did this, but other routes could be used to gain credit. Candidates should be careful not to create lists in this style of question and simply produce a single response, as contradictions can be penalised.
	Total	2	
16	Waves are reflected at the pulley end.	B1	

| | | Calculation
 comparing at least
 two stationary
 waves to show $f \lambda=$
 constant or $f \infty 1 / \lambda$ | The majority of the candidates scored 1 mark for either mentioning that the
 wavelength was inversely proportional to the frequency or identifying the correct
 relationship between the length of the tube and the wavelength. Generally, the
 explanations lacked cohesion and showed poor comprehension of stationary
 waves formed within a fixed column of air. The common errors are highlighted
 below. |
| :--- | :--- | :--- | :--- | :--- |
| 21 | | | |

		$\begin{aligned} & v=500 \times 0.672= \\ & 336\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	A1	A solution worked to 2 SF will score a maximum of 3 marks.
	b	smaller λ means smaller / to measure, so less accurate measurement. added detail or expansion of argument.	B1 B1	
	c	the wave reflected at the end of the pipe interferes / superposes with the incident wave. to produce a resultant wave with nodes and antinodes. both ends must be antinodes or the pipe must be $\mathrm{n} \lambda / 2$ in length for this to happen. at \mathbf{Q} air molecules oscillate with motion along the axis of the tube or with maximum amplitude. at \mathbf{P} no motion / nodal point.	B1 B1 B1 B1 B1 B1	allow vibrate.
		Total	12	
22		Level 3 (5-6 marks) Clear explanation of observations and correct determination of frequency. There is a welldeveloped line of reasoning which is clear and logically structured. The information presented is relevant and	B1 $\times 6$	Indicative scientific points may include: Explanation of observations - Metal sheet reflects microwaves - Idea/description of superposition - Constructive/destructive interference - Standing wave pattern between T and plate - Maxima are antinodes and and minima are nodes. - Phase difference at nodes and antinodes - Distance between successive maxima/minima is $\lambda / 2$ - Distance between adjacent regions of maximum and minimum intensities is $\lambda / 4$

substantiated.

Level 2 (3-4 marks)

Clear explanation of observations or correct method to determine the frequency or some explanation of observations and some method for the determination of the frequency

There is a line of reasoning presented with some structure.
The information presented is in the most-part relevant and supported by some evidence. Level 1 (1-2 marks)
Has limited explanation of observations or limited evidence of method to determine the frequency

There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.

0 marks

No response or no response worthy of credit.

Determination of frequency

- $f=\frac{v}{\lambda}$
- $\lambda=4 \times 72 \mathrm{~mm}=288 \mathrm{~mm}$
- $f=\frac{3 \times 10^{8}}{288 \times 10^{-3}}=1.04 \times 10^{9} \mathrm{~Hz}$

Examiner's Comments

This was the second Level of Response question; a good range of marks was achieved. It required candidates to explain a standing wave pattern formed by microwaves. Many good candidates explained the pattern produced in terms of the metal sheet reflecting the microwaves, causing superposition with an explanation of nodes and antinodes. It was hoped that their understanding that the distance between successive maxima/minima is $\lambda / 2$ would assist them in the calculation of the frequency.

Good candidates wrote the equation and indicated that the wavelength of the microwaves was 0.288 m .

Candidates should practise writing explanations to physics phenomenon. It is expected that the answers to these Level of Response questions will have a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated.

Exemplar 7

				A stationany waine is Formed when the intedent and reftecte d microwanes surerpose to form a q........ nesuiternt woine consent. The nesuatant wave hes maximum and minumum the \qquad maximum nephesents an antinoole.... An centinade. is formed when constructive intenefenence, foves place...... Mresum formed when. and similarly de a minimumf wow formed wheme distanco betureen an antinade and a no. an is 0.072 m, which $i n$ guter of the wave length The full wavetingth is 0.288 m long (0.072×4). $\therefore v=f \cdots$ \therefore frequency $=\frac{\text { velocity }}{\text { vornedingth }}$ This is an example of a Level of Response answer. The question gives a practical demonstration which candidates may have seen during the AS course. The question gives candidates the opportunity to describe the observations using their knowledge and understanding as well as determining the frequency of the microwaves. Candidates should use appropriate physics terms. In this case the candidate begins by implying that the microwaves are reflected by the barrier to superimpose a resultant wave. The candidate states that maxima are antinodes and formed by constructive interference. The candidate then explains the formation of nodes in terms of destructive interference. Appropriate physics terms have been used. The candidate has then correctly realised that the distance between the node and an anti-node is a quarter of a wavelength. The candidate could have stated that the distance between successive nodes is half a wavelength, but this is implied in the previous statement. Finally, the candidate clearly shows the method of determining the wavelength by quoting the wave equation, rearranging the equation and substituting values. The candidate finishes the determination of the frequency by calculating the frequency and then rounding to an appropriate number of significant figures two or three) and gives a correct unit (Hz).
		Total	6	
23		Level 3(5-6 marks) Clear description and explanation for both experiments and some	$\begin{gathered} \text { B1 } \times \\ 6 \end{gathered}$	Use level of response annotations in RM Assessor, e.g. L2 for 4 marks, L2^ for 3 marks, etc. Indicative scientific points may include:

	Total	6	
24	Level 3 (5-6 marks) Clear explanation of observations and correct method to determine the speed of sound There is a welldeveloped line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Clear explanation of observations or correct method to determine the speed of sound or has limited explanation of observations and limited method for the determination of the speed of sound There is a line of reasoning presented with some structure. The information presented is in the mostpart relevant and supported by some evidence. Level 1 (1-2 marks) Has limited explanation of observations or limited evidence of method to determine the speed of sound The information is basic and communicated in an unstructured way.	B1 x6	Indicative scientific points may include: Explanation of Observations - Understanding of how the standing wave is formed from the interference between the incident and reflected wave - Idea of nodes and antinodes - Node at closed end and antinode at open end - Understanding of the direction of oscillation of particles - Fundamental frequency $/ 1^{\text {st }}$ harmonic indicated for closed tube. - Fundamental frequency/1 ${ }^{\text {st }}$ harmonic indicated for open tube - Harmonics indicated for closed tube - Harmonics indicated for open tube Determination of speed of sound - λ correctly linked to length - $v=f \lambda$ - $\quad v$ calculated for different harmonics / tube or appropriate graphical method - $338 \mathrm{~ms}^{-1}$ Examiner's Comments The second level of response question required candidates to explain the results of an experiment investigating stationary waves in a closed and open hollow tubes. Good candidates demonstrated their knowledge and understanding by explaining how the standing wave was formed, where nodes and antinodes were positioned and how the wavelength of the stationary wave could be determined. Many candidates drew additional diagrams showing the harmonics in both open and closed tubes. To gain the highest marks, it was expected that candidates would determine the speed of sound correctly for more than one tube.

		The information is supported by limited evidence and the relationship to the evidence may not be clear. 0 marks No response or no response worthy of credit.		
		Total	6	
25		*Level 3 (5-6 marks) Clear explanation and analysis There is a welldeveloped line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Some explanation and some analysis. There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. Level 1 (1-2 marks) Limited explanation or limited analysis The information is basic and communicated in an unstructured way. The information is supported by limited evidence	$\begin{gathered} \mathrm{B} 1 \times \\ 6 \end{gathered}$	Indicative scientific points may include: Explanation - Sound reflected at closed end - Superposition / interference produces stationary wave within tube - Maximum identified as anti-nodes - Minima identified as nodes Analysis - $\lambda / 2=0.26(\mathrm{~m})$ or $\lambda=0.52(\mathrm{~m})$ - period $=1.5(\mathrm{~ms})$ - frequency $=1 / 0.0015$ or frequency $=660(\mathrm{~Hz})$ - $v=0.52 \times 660=340 \mathrm{~m} \mathrm{~s}^{-1}$ (Note: $v=350 \mathrm{~m} \mathrm{~s}^{-1}$ if there is no rounding.)

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& \& \& small number of candidates, mainly at the lower quartile, made errors with powers of ten and got an answer of 0.17 instead of 170 . \\
\hline \& ii \& \begin{tabular}{l}
\[
\begin{aligned}
\& v=f \lambda \text { or } \lambda=2 \mathrm{~L} \text { or } v \\
\& =2 f L \text { (Any subject) }
\end{aligned}
\] \\
Clear steps leading \\
to gradient
\[
=\frac{v}{2}
\] using \(y=m x\)
\end{tabular} \& C1 \& \begin{tabular}{l}
Allow separation between adjacent nodes
\[
=\frac{\lambda}{2}
\] \\
Allow gradient \(=f \div(\lambda / 2)^{-1}=f \lambda / 2=v / 2\) \\
Examiner's Comments \\
Most candidates scored 1 mark for either quoting the wave equation \(v=f \lambda\) or the wavelength being twice inter-nodal distance \(L\). The analysis leading to the gradient \(=v / 2\) proved to be quite demanding for most of the candidates. The most frequent incorrect reasoning was that speed \(v\) was divided by 2 because the sound waves are reflected from the wall, and they had to travel twice the distance there and back. Only the most able of the candidates scored full marks.
\end{tabular} \\
\hline \& iii \& \[
\begin{aligned}
\& v=2 \times 170 \\
\& v=340\left(\mathrm{~m} \mathrm{~s}^{-1}\right)
\end{aligned}
\] \& B1 \& \begin{tabular}{l}
Possible ECF from (b)(i) \\
Examiner's Comments \\
Almost all candidates picked up 1 mark for multiplying their answer from (b)(i) by 2. This included those who also got an answer such as 0.17 in (b)(i). Error carried forward (ECF) rules were applied even when the speed of sound looked unrealistic.
\end{tabular} \\
\hline \& iv \& \begin{tabular}{l}
Decrease \\
frequency / \(f\) (ORA) \\
\(L / \lambda\) increases (so, smaller \% uncertainty) (ORA) \\
or \\
Measure distance between several nodes / antinodes Distance measured is larger (so, smaller \% uncertainty) \\
or \\
Use a small(er) microphone \\
Easier to locate position of node / antinode (so,
\end{tabular} \& M1
A1

M1
A1
A1

M1

A1 \& | Allow other sensible suggestions |
| :--- |
| Allow increase wavelength / λ (ORA) |
| Allow L increases (so, smaller \% uncertainty) (ORA) |
| Allow reduce reflection of sound (other than from the wall) |
| Examiner's Comments |
| This was a low-scoring question, with many candidates focussing on averaging results. Only a small number of candidates appreciated that lower frequency would give longer inter-nodal distance L, and this resulted in smaller percentage uncertainty. |

\hline
\end{tabular}

		smaller \% uncertainty)		
		Total	7	
28	Level 3 (5-6 marks) Response shows clear distinction between investigations; clear and correct reasoning is given for the situations which give maximum / minimum readings in both cases, including correct numerical values There is a welldeveloped line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Response refers to both investigations; some reasoning is given for the situations which give maximum / minimum readings in both investigations, including some numerical values There is a line of reasoning presented with some structure. The information presented is in the most part relevant and supported by some evidence. Level 1 (1-2 marks) Limited reasons are given for the		B1 $\times 6$	Use level of response annotations in RM Assessor, e.g. L2 for 4 marks, L2^ for 3 marks, etc. Indicative scientific points may include: explanation 1 - receiver aerial vertical - electrons are driven (maximum distance) up and down along the length of the aerial because the oscillations (of the electric field) are vertical, causing maximum (a.c.) current - receiver aerial horizontal - electrons are driven (minimum distance) across the aerial because the oscillations (of the electric field) are only in the vertical plane (no oscillation along the aerial to cause current), so zero / minimum current - rotation of receiver aerial by $\pm 90^{\circ}$ (or 90° and 270°) from vertical leads to zero current explanation 2 - reflected wave superposes with incident wave at receiver aerial - coherent waves as from same source - constructive interference / waves in phase gives max current - reflected wave has travelled $n \lambda$ further, $n=0,1$, etc - so max current when plate is at $\lambda / 2,2 \lambda / 2$, etc from receiver aerial, i.e. 30, 60 cm - destructive interference / waves 180° ($\pi \mathrm{rad}$) out of phase gives zero current - reflected wave has travelled $(2 n+1) \lambda / 2$ further, $n=0,1$, etc - so zero current when plate is at $\lambda / 4,3 \lambda / 4$, etc from receiver aerial, i.e. $15,45 \mathrm{~cm}$ - reflected signal will be weaker the further it has to travel so no longer complete cancellation (ammeter reads close to zero) Note: Give full credit to candidates who take the 180° ($\pi \mathrm{rad}$) phase change on reflection into account, which gives max current at 15, 45 cm etc and zero current at $30,60 \mathrm{~cm}$ etc. Examiner's Comments This was the second of the two LoR questions in this paper. It required knowledge of polarisation, superposition and interference. There is no one perfect model response but generally, for Level 3, candidates were required to give clear reasoning for the situations which gave both maximum and minimum readings in both investigations. Such candidates included correct numerical values in their responses (although 'half a wavelength' was acceptable in place of 30 cm). Level 2 responses were sometimes incomplete (e.g. giving the maximum position but not the minimum position) or confused (e.g. the maximum and minimum positions were given but were the wrong way around). Level 1 responses came from candidates who misunderstood the physics of one of the situations, or who confused phase difference and path difference, or whose descriptions were generally too vague to gain much credit.

\(\left.$$
\begin{array}{|l|l|l|l|}\hline & & \begin{array}{l}\text { situations which } \\
\text { give maximum / } \\
\text { minimum readings } \\
\text { in either } \\
\text { investigation }\end{array} \\
\begin{array}{l}\text { There is an attempt at } \\
\text { a logical structure } \\
\text { with a line of } \\
\text { reasoning. The } \\
\text { information is in the } \\
\text { most part relevant. } \\
\text { 0 marks } \\
\text { No response or no } \\
\text { response worthy of } \\
\text { credit. }\end{array}\end{array}
$$ \quad \begin{array}{l}It may be helpful to point out that investigation 2 was not about the formation of

a stationary wave; rather, it was about two overlapping coherent waves forming

regions of constructive and destructive interference. A common misconception

was that the maximum and minima signals were related to antinodes and

nodes.\end{array}\right\}\)| A minimum or zero reading does not occur when two waves are merely out of |
| :--- |
| phase. They must be completely out of phase. The best way to describe this is to |
| say that they are in antiphase. |

